Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37820951

RESUMO

BACKGROUND: Mycobacterium abscessus (Mab) is considered as the most pathogenic rapid-growing mycobacteria in humans, causing pulmonary and extra-pulmonary diseases, especially in patients with cystic fibrosis. Mab shows intrinsic and acquired resistance to many drugs, leaving limited treatment options that lead to a generally poor prognosis. The standard therapeutic regimen last for more than 6 months and consists of a drug cocktail that ideally includes a macrolide and amikacin. Yet, toxicity and efficacy are suboptimal due also to the high toxicity. There is a need to introduce innovative and out-of-the-box approaches to improve treatments. OBJECTIVES: In this narrative review, we summarize the recent research on the alternative strategies proposed and discuss the importance of using appropriate experimental assays to assess their activity. SOURCES: Included articles were identified by searching PubMed and MEDLINE until June 2023. The search terms were 'Mycobacterium abscessus', 'antimicrobial', and 'alternative therapies'. Additional relevant references were obtained from articles retrieved from the primary search. CONTENT: Therapies against Mab including host directed therapies, repurposed drugs, phage therapy, anti-virulence strategies, essential oils, and inhalation therapies. IMPLICATIONS: Alternative treatments may represent a valid tool to cope the burden of antimicrobial resistance in Mab-caused diseases.

2.
Cell Death Dis ; 14(8): 505, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543647

RESUMO

Mycobacterium tuberculosis (Mtb) is known to evade host immune responses and persist in macrophages for long periods. A mechanism that the host uses to combat Mtb is xenophagy, a selective form of autophagy that targets intracellular pathogens for degradation. Ubiquitination of Mtb or Mtb-containing compartments is a key event to recruit the autophagy machinery and mediate the bacterial delivery to the lysosome. This event relies on the coordinated and complementary activity of different ubiquitin ligases, including PARKIN, SMURF1, and TRIM16. Because each of these factors is responsible for the ubiquitination of a subset of the Mtb population, it is likely that additional ubiquitin ligases are employed by macrophages to trigger a full xenophagic response during Mtb infection. In this study, we investigated the role TRIM proteins whose expression is modulated in response to Mtb or BCG infection of primary macrophages. These TRIMs were ectopically expressed in THP1 macrophage cell line to assess their impact on Mtb replication. This screening identified TRIM32 as a novel player involved in the intracellular response to Mtb infection, which promotes autophagy-mediated Mtb degradation. The role of TRIM32 in xenophagy was further confirmed by silencing TRIM32 expression in THP1 cells, which causes increased intracellular growth of Mtb associated to impaired Mtb ubiquitination, reduced recruitment of the autophagy proteins NDP52/CALCOCO2 and BECLIN 1/BECN1 to Mtb and autophagosome formation. Overall, these findings suggest that TRIM32 plays an important role in the host response to Mtb infection through the induction of autophagy, representing a promising target for host-directed tuberculosis therapies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ubiquitina/metabolismo , Macrófagos/metabolismo , Tuberculose/genética , Autofagia/fisiologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/metabolismo
3.
Children (Basel) ; 10(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37238447

RESUMO

PURPOSE: During the COVID-19 pandemic, the use of salivary swabs (SS) to detect the SARS-CoV-2 virus has been implemented and widely studied in adults and children. However, the role of SS in detecting other common respiratory viruses in children is poorly investigated. METHODS: Children younger than 18 years of age admitted with respiratory signs and symptoms underwent both nasopharyngeal and SS procedures. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of SS were calculated, considering the nasopharyngeal swab result as the gold standard. RESULTS: A total of 83 patients (44 females, 53%) underwent both nasopharyngeal and SS procedures. Overall, the sensitivity of SS was 49.4%. Sensitivity according to different respiratory viruses ranged from 0% to 71.43%, while the specificity ranged from 96% to 100%. Negative predictive value ranged from 68.06% to 98.8%, while positive predictive value ranged from 0 to 100%. SS sensitivity in patients younger than 12 months of age was 39.47%, while in patients older than or equal to 12 months of age it was 57.78%. Patients with negative SS had a significantly lower median age (8.5 months (15.25) vs. 23 months (34), p = 0.001) and a significantly lower quantity of median saliva collected for salivary analysis (0 µL (213) vs. 300 µL (100), p < 0.001). CONCLUSIONS: SS has a relatively low sensitivity in detecting common respiratory viruses in children with LRTI, with a lower probability in younger children (and in particular those younger than 6 months of age) or those from whom we have collected lesser amounts of saliva. New strategies to improve saliva collection are needed for testing on a larger study population.

4.
Microorganisms ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985128

RESUMO

Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.

5.
Eur J Pediatr ; 182(5): 2155-2167, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36847873

RESUMO

Commercially available Interferon-γ release assays (IGRAs), including the last-generation QuantiFERON TB-Plus (QFT-Plus), are effective in aiding the diagnosis of tuberculosis (TB) infection but cannot distinguish latent TB subjects from active TB patients. The aim of this study was to prospectively evaluate the performance of an HBHA-based IGRA, combined with commercially available IGRAs, to assess their usefulness as a prognostic biomarkers and aid in the monitoring of TB treatment in children. Following clinical, microbiological, and radiological assessment, children younger than 18 years of age classified as either LTBI or active TB were tested at baseline and during treatment by the QuantiFERON TB-Plus (QFT) assay and an aliquot of whole-blood was stimulated with HBHA. Among the 655 children evaluated, 559 (85.3%) were classified as "Non TB", 44 patients (6.7%) with active TB, and 52 (7.9%) with LTBI. The median HBHA-IGRA IFN-gamma responses were able to discriminate active TB from LTBI (0.13 IU/ml vs 1.995, (p < 0,0001), those with asymptomatic TB from those with symptomatic TB (1.01 IU/ml vs 0.115 IU/ml, p 0.017), or more severe TB (p 0.022), and significantly raised during successful TB treatment (p < 0.0001). Conversely, CD4 + and CD8 + responses were similar in all groups of patients, although active TB patients had higher CD4 + responses and LTBI higher CD8 + responses.  Conclusion: HBHA-based IGRA, combined with CD4 + and CD8 + responses assessed by commercially available IGRAs, is a useful support in the characterization of the TB spectrum in children and monitoring of TB-therapy. What is Known: • Current immune diagnostics are not able to discriminate active and latent Ttuberculosis, including the recently approved QFT-PLUS.. • New immunological assays with prognostic value are highly needed. What is New: • HBHA-based IGRA, combined with CD4+ and CD8+ responses assessed by commercially available IGRAs, is a useful support for the differentiation of active and latent TB in children.. • HBHA-based IGRA, combined with CD4+ and CD8+ responses assessed by commercially available IGRAs, is a useful support in the monitoring of TBtherapy in children..


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Criança , Humanos , Linfócitos T CD8-Positivos , Interferon gama , Testes de Liberação de Interferon-gama , Tuberculose Latente/diagnóstico , Tuberculose Latente/tratamento farmacológico , Teste Tuberculínico , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
6.
Antibiotics (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671372

RESUMO

Even though Everolimus has been investigated in a phase II randomized trial as a host-directed therapy (HDT) to treat tuberculosis (TB), an oncological patient treated with Everolimus for a neuroendocrine pancreatic neoplasia developed active TB twice and a non-tuberculous mycobacterial (NTM) infection in a year and a half time span. To investigate this interesting case, we isolated and genotypically characterized the Mycobacterium tuberculosis (Mtb) clinical strain from the patient and tested the effect of Everolimus on its viability in an axenic culture and in a peripheral blood mononuclear cell (PBMCs) infection model. To exclude strain-specific resistance, we tested the activity of Everolimus against Mtb strains of ancient and modern lineages. Furthermore, we investigated the Everolimus effect on ROS production and autophagy modulation during Mtb infection. Everolimus did not have a direct effect on mycobacteria viability and a negligible effect during Mtb infection in host cells, although it stimulated autophagy and ROS production. Despite being a biologically plausible HDT against TB, Everolimus does not exert a direct or indirect activity on Mtb. This case underlines the need for a careful approach to drug repurposing and implementation and the importance of pre-clinical experimental studies.

7.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674717

RESUMO

Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cistamina/farmacologia , Cistamina/uso terapêutico , Leucócitos Mononucleares , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
8.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139097

RESUMO

Intestinal bacterial communities participate in gut homeostasis and are recognized as crucial in bowel inflammation and colorectal cancer (CRC). Fusobacterium nucleatum (Fn), a pathobiont of the oral microflora, has recently emerged as a CRC-associated microbe linked to disease progression, metastasis, and a poor clinical outcome; however, the primary cellular and/or microenvironmental targets of this agent remain elusive. We report here that Fn directly targets putative colorectal cancer stem cells (CR-CSCs), a tumor cell subset endowed with cancer re-initiating capacity after surgery and chemotherapy. A patient-derived CSC line, highly enriched (70%) for the stem marker CD133, was expanded as tumor spheroids, dissociated, and exposed in vitro to varying amounts (range 100-500 MOI) of Fn. We found that Fn stably adheres to CSCs, likely by multiple interactions involving the tumor-associated Gal-GalNac disaccharide and the Fn-docking protein CEA-family cell adhesion molecule 1 (CEACAM-1), robustly expressed on CSCs. Importantly, Fn elicited innate immune responses in CSCs and triggered a growth factor-like, protein tyrosine phosphorylation cascade largely dependent on CEACAM-1 and culminating in the activation of p42/44 MAP kinase. Thus, the direct stimulation of CSCs by Fn may contribute to microbiota-driven colorectal carcinogenesis and represent a target for innovative therapies.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Células-Tronco Neoplásicas , Antígenos CD , Moléculas de Adesão Celular , Neoplasias Colorretais/patologia , Dissacarídeos , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Tirosina
9.
Children (Basel) ; 9(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35626859

RESUMO

While the clinical impact of COVID-19 on adults has been massive, the majority of children develop pauci-symptomatic or even asymptomatic infection and only a minority of the latter develop a fatal outcome. The reasons of such differences are not yet established. We examined cytokines in sera and Th and B cell subpopulations in peripheral blood mononuclear cells (PBMC) from 40 children (<18 years old), evaluating the impact of COVID-19 infection during the pandemic's first waves. We correlated our results with clinical symptoms and compared them to samples obtained from 16 infected adults and 7 healthy controls. While IL6 levels were lower in SARS-CoV-2+ children as compared to adult patients, the expression of other pro-inflammatory cytokines such as IFNγ and TNFα directly correlated with early age infection and symptoms. Th and B cell subsets were modified during pediatric infection differently with respect to adult patients and controls and within the pediatric group based on age. Low levels of IgD− CD27+ memory B cells correlated with absent/mild symptoms. On the contrary, high levels of FoxP3+/CD25high T-Regs associated with a moderate−severe clinical course in the childhood. These T and B cells subsets did not associate with severity in infected adults, with children showing a predominant expansion of immature B lymphocytes and natural regulatory T cells. This study shows differences in immunopathology of SARS-CoV-2 infection in children compared with adults. Moreover, these data could provide information that can drive vaccination endpoints for children.

11.
Front Med (Lausanne) ; 8: 671018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485325

RESUMO

Background: Haemophilus parasuis (Hps; now Glaesserella parasuis) is an infectious agent that causes severe arthritis in swines and shares sequence similarity with residues 261-273 of collagen type 2 (Coll261-273), a possible autoantigen in rheumatoid arthritis (RA). Objectives/methods: We tested the presence of Hps sequencing 16S ribosomal RNA in crevicular fluid, synovial fluids, and tissues in patients with arthritis (RA and other peripheral arthritides) and in healthy controls. Moreover, we examined the cross-recognition of Hps by Coll261-273-specific T cells in HLA-DRB1*04pos RA patients, by T-cell receptor (TCR) beta chain spectratyping and T-cell phenotyping. Results: Hps DNA was present in 57.4% of the tooth crevicular fluids of RA patients and in 31.6% of controls. Anti-Hps IgM and IgG titers were detectable and correlated with disease duration and the age of the patients. Peripheral blood mononuclear cells (PBMCs) were stimulated with Hps virulence-associated trimeric autotransporter peptide (VtaA10755-766), homologous to human Coll261-273 or co-cultured with live Hps. In both conditions, the expanded TCR repertoire overlapped with Coll261-273 and led to the production of IL-17. Discussion: We show that the DNA of an infectious agent (Hps), not previously described as pathogen in humans, is present in most patients with RA and that an Hps peptide is able to activate T cells specific for Coll261-273, likely inducing or maintaining a molecular mimicry mechanism. Conclusion: The cross-reactivity between VtaA10755-766 of a non-human infectious agent and human Coll261-273 suggests an involvement in the pathogenesis of RA. This mechanism appears emphasized in predisposed individuals, such as patients with shared epitope.

12.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359294

RESUMO

BACKGROUND: SARS-CoV-2 antigen detection has currently expanded the testing capacity for COVID-19, which yet relies on the SARS-CoV-2 RNA RT-PCR amplification. OBJECTIVES: To report on a COVID-19 testing algorithm from a tertiary care hospital emergency department (ED) that combines both antigen (performed on the ED) and RT-PCR (performed outside the ED) testing. METHODS: Between December 2020 and January 2021, in a priori designated, spatially separated COVID-19 or non-COVID-19 ED areas, respectively, symptomatic or asymptomatic patients received SARS-CoV-2 antigen testing on nasopharyngeal swab samples. Antigen results were promptly accessible to guide subsequent, outside performed confirmatory (RT-PCR) testing. RESULTS: Overall, 1083 (100%) of 1083 samples in the COVID-19 area and 1815 (49.4%) of 3670 samples in the non-COVID-19 area had antigen results that required confirmation by RT-PCR. Antigen positivity rates were 12.4% (134/1083) and 3.7% (66/1815), respectively. Compared to RT-PCR testing results, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of antigen testing were, respectively, 68.0%, 98.3%, 88.8%, and 94.1% in the COVID-19 area, and 41.9%, 97.3%, 27.3%, and 98.6% in non-COVID-19 area. Practically, RT-PCR tests were avoided in 50.6% (1855/3670) of non-COVID-19 area samples (all antigen negative) from patients who, otherwise, would have needed antigen result confirmation. CONCLUSIONS: Our algorithm had value to preserve RT-PCR from avoidable usage and, importantly, to save time, which translated into a timely RT-PCR result availability in the COVID-19 area.

13.
iScience ; 24(7): 102788, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34222841

RESUMO

Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.

14.
J Immunol ; 206(10): 2420-2429, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941660

RESUMO

We have recently shown that type 2 transglutaminase (TG2) plays a key role in the host's inflammatory response during bacterial infections. In this study, we investigated whether the enzyme is involved in the regulation of the STING pathway, which is the main signaling activated in the presence of both self- and pathogen DNA in the cytoplasm, leading to type I IFN (IFN I) production. In this study, we demonstrated that TG2 negatively regulates STING signaling by impairing IRF3 phosphorylation in bone marrow-derived macrophages, isolated from wild-type and TG2 knockout mice. In the absence of TG2, we found an increase in the IFN-ß production and in the downstream JAK/STAT pathway activation. Interestingly, proteomic analysis revealed that TG2 interacts with TBK1, affecting its interactome composition. Indeed, TG2 ablation facilitates the TBK1-IRF3 interaction, thus indicating that the enzyme plays a negative regulatory effect on IRF3 recruitment in the STING/TBK1 complex. In keeping with these findings, we observed an increase in the IFNß production in bronchoalveolar lavage fluids from COVID-19-positive dead patients paralleled by a dramatic decrease of the TG2 expression in the lung pneumocytes. Taken together, these results suggest that TG2 plays a negative regulation on the IFN-ß production associated with the innate immunity response to the cytosolic presence of both self- and pathogen DNA.


Assuntos
COVID-19/imunologia , Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Transglutaminases/imunologia , Animais , COVID-19/genética , COVID-19/patologia , Proteínas de Ligação ao GTP/genética , Humanos , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Interferon beta/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transglutaminases/genética
15.
Int J Med Microbiol ; 311(4): 151506, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906074

RESUMO

Isoniazid (INH) is the cornerstone of the anti-tuberculosis regimens and emergence of Mycobacterium tuberculosis (Mtb) resistant strains is a major threat to our ability to control tuberculosis (TB) at global level. Mutations in the gene coding the catalase KatG confer resistance to high level of INH. In this paper, we describe for the first time a complete deletion of the genomic region containing the katG gene in an Mtb clinical strain isolated in Italy in a patient with HIV infection that previously completed INH preventive therapy. We genotypically characterized the Mtb strain and showed that katG deletion confers high-level resistance to INH (MIC > 25.6 µg/mL). The katG deletion did not impact significantly on Mtb fitness as we did not detect enhanced susceptibility to H2O2 compared to the wild type Mtb strains nor impaired growth in in vitro infection models. These findings highlight the ability of Mtb to acquire resistance to INH while maintaining fitness and pathogenic potential.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Deleção de Genes , Humanos , Peróxido de Hidrogênio , Itália , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética
16.
Clin Chem Lab Med ; 59(8): 1468-1476, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33823089

RESUMO

OBJECTIVES: Compared to RT-PCR, lower performance of antigen detection assays, including the Lumipulse G SARS-CoV-2 Ag assay, may depend on specific testing scenarios. METHODS: We tested 594 nasopharyngeal swab samples from individuals with COVID-19 (RT-PCR cycle threshold [Ct] values ≤ 40) or non-COVID-19 (Ct values >40) diagnoses. RT-PCR positive samples were assigned to diagnostic, screening, or monitoring groups of testing. RESULTS: With a limit of detection of 1.2 × 104 SARS-CoV-2 RNA copies/mL, Lumipulse showed positive percent agreement (PPA) of 79.9% (155/194) and negative percent agreement of 99.3% (397/400), whereas PPAs were 100% for samples with Ct values of <18 or 18-<25 and 92.5% for samples with Ct values of 25-<30. By three groups, Lumipulse showed PPA of 87.0% (60/69), 81.1% (43/53), or 72.2% (52/72), respectively, whereas PPA was 100% for samples with Ct values of <18 or 18-<25, and was 94.4, 80.0, or 100% for samples with Ct values of 25-<30, respectively. Additional testing of RT-PCR positive samples for SARS-CoV-2 subgenomic RNA showed that, by three groups, PPA was 63.8% (44/69), 62.3% (33/53), or 33.3% (24/72), respectively. PPAs dropped to 55.6, 20.0, or 41.7% for samples with Ct values of 25-<30, respectively. All 101 samples with a subgenomic RNA positive result had a Lumipulse assay's antigen positive result, whereas only 54 (58.1%) of remaining 93 samples had a Lumipulse assay's antigen positive result. CONCLUSIONS: Lumipulse assay was highly sensitive in samples with low RT-PCR Ct values, implying repeated testing to reduce consequences of false-negative results.


Assuntos
COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Humanos , Limite de Detecção , Nasofaringe/virologia , Kit de Reagentes para Diagnóstico , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
17.
Virulence ; 12(1): 868-884, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33757409

RESUMO

PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) constitute a large family of complex modular proteins whose role is still unclear. Among those, we have previously shown, using the heterologous expression in Mycobacterium smegmatis, that PE_PGRS3 containing a unique arginine-rich C-terminal domain, promotes adhesion to host cells. In this study, we investigate the role of PE_PGRS3 and its C-terminal domain directly in Mtb using functional deletion mutants. The results obtained here show that PE_PGRS3 is localized on the mycobacterial cell wall and its arginine-rich C-terminal region protrudes from the mycobacterial membrane and mediates Mtb entry into epithelial cells. Most importantly, this positively charged helical domain specifically binds phosphorylated phosphatidylinositols and cardiolipin, whereas it is unable to bind other phospholipids. Interestingly, administration of cardiolipin and phosphatidylinositol but no other phospholipids was able to turn-off expression of pe_pgrs3 activated by phosphate starvation conditions. These findings suggest that PE_PGRS3 has the key role to serve as a bridge between mycobacteria and host cells by interacting with specific host phospholipids and extracting them from host cells, for their direct integration or as a source of phosphate, during phases of TB pathogenesis when Mtb is short of phosphate supply.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Arginina , Proteínas de Bactérias/genética , Cardiolipinas , Humanos , Fosfatos , Fosfatidilinositóis , Fosfolipídeos
18.
Pediatr Pulmonol ; 56(6): 1374-1377, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33470561

RESUMO

Weather and the susceptibility of children to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still a debated question and currently a hot topic, particularly in view of important decisions regarding opening schools. Therefore, we performed this prospective analysis of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies in children with known household exposure to SARS-CoV-2 and compared their IgG status with the other adults exposed to the index case in the same household. A total of 30 families with a documented COVID-19 index case were included. A total of 44 out of 80 household contacts (55%) of index patients had anti SARS-CoV-2 IgG antibodies. In particular, 16/27 (59,3%) adult partners had IgG antibodies compared with 28/53 (52,3%) of pediatric contacts (p > .05). Among the pediatric population, children ≥5 years of age had a similar probability of having SARS-CoV-2 IgG antibodies (21/39, 53.8%) compared to those less than 5 years old (7/14, 50%) (p > .05). Adult partners and children also had a similar probability of having SARS-CoV-2 IgG antibodies. Interestingly, 10/28 (35.7%) of children and 5/27 (18.5%) of adults with SARS-CoV-2 IgG antibodies were previously diagnosed as COVID-19 cases. Our study shows evidence of a high rate of IgG antibodies in children exposed to SARS-CoV-2. This report has public health implications, highlighting the need to establish appropriate guidelines for school openings and other social activities related to childhood.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , Imunoglobulina G/sangue , SARS-CoV-2 , Adolescente , Adulto , COVID-19/imunologia , COVID-19/virologia , Criança , Pré-Escolar , Exposição Ambiental , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Estudos Soroepidemiológicos
20.
J Cereb Blood Flow Metab ; 41(2): 324-335, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32169015

RESUMO

Abnormalities in arterial versus venous endothelial cell identity and dysregulation of angiogenesis are deemed important in the pathophysiology of brain arteriovenous malformations (AVMs). The Sonic hedgehog (Shh) pathway is crucial for both angiogenesis and arterial versus venous differentiation of endothelial cells, through its dual role on the vascular endothelial growth factor/Notch signaling and the nuclear orphan receptor COUP-TFII. In this study, we show that Shh, Gli1 (the main transcription factor of the Shh pathway), and COUP-TFII (a target of the non-canonical Shh pathway) are aberrantly expressed in human brain AVMs. We also show that implantation of pellets containing Shh in the cornea of Efnb2/LacZ mice induces growth of distinct arteries and veins, interconnected by complex sets of arteriovenous shunts, without an interposed capillary bed, as seen in AVMs. We also demonstrate that injection in the rat brain of a plasmid containing the human Shh gene induces the growth of tangles of tortuous and dilated vessels, in part positive and in part negative for the arterial marker αSMA, with direct connections between αSMA-positive and -negative vessels. In summary, we show that the Shh pathway is active in human brain AVMs and that Shh-induced angiogenesis has characteristics reminiscent of those seen in AVMs in humans.


Assuntos
Malformações Arteriovenosas/metabolismo , Encéfalo/fisiopatologia , Proteínas Hedgehog/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...